

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sem-V

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Τ	Р	0	E	L	Τ	Р	Total
	Analog and Digital Communication	3	0	2	5	10	3	0	1	4
PC		Examination Scheme								
		Component		ISE	ISE (%) MS		L (%)	ESE (%)		Total
EC301		The	ory	2	20	2	0	6	0	100
		Laboratory		7	70 -		-	3	0	100

 Pre-requisite Course Codes, if any.
 Electronic devices, Probability and random process and Signals and Systems

 Course Objective: The objective is to equip the students with basic knowledge for analyzing analog and digital communication systems ranging from data networks and internet to mobile data communication systems

such as cellular and WiFi systems. Specifically, the students will learn how to manage communication system resources including bandwidth and power by selecting a proper signaling and/or analog/pulse/digital modulation scheme

Course Out	comes (CO): At the End of the course students will be able to
CO.1	Describe various entities of analog/pulse/ digital communication system
CO^2	Apply mathematical concepts and compute performance parameters of var-
0.2	ious analog/pulse/digital modulation schemes
CO^{2}	Analyze system performance of various analog/pulsed/digital modulation
0.5	methods in time domain/ frequency domain/ signal space
CO 4	Analyze the behavior of a various analog/pulse/digital modulation schemes
0.4	with and without noise
CO.5	Compare various modulation/demodulation techniques
CO 6	Examine various wired and wireless applications and further infer health/ safety/environment
0.0	aspects of wired and wireless systems

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	3				-				-	-		
CO.2	2	2			3				3	3		
CO.3	2	2			3				3	3		1
CO.4	3	3			3				3	3		1
CO.5	2	2			3				3	3		
CO.6	1	1				1	1	1	3	3		3
overall strength	3	3			3	1	1	1	2	2		2

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Mapping of CO with PO:(correlation/ strength matrix)

Correlation Levels : 1(weak) 2(medium) 3(strong)

It is decided on based on depth of the teaching -learning required and questions he/she plans to ask in exams in the various assessment modes during a semester.

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
CO.1	2	2				
CO.2	2	2		2	1	
CO.3	2	2		2	1	
CO.4	2	2		2	1	
CO.5	2	2				
CO.6	1	1				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze	Evaluate	Create
---------------------	-------	---------	----------	--------

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Continuous-Wave Modulation	1	
2	1.1	Review of signals and systems, Frequency domain representation of signals, classification of Frequency spectrum, Need for modulation, Block diagram of an analog and digital communication system. Amplitude modulation, Linear modulation schemes, Frequency translation, FDM		08
	1.3 1.4	Frequency modulation,Spectral characteristics of angle modulated signals,Generation of FM signals:Indirect method, FM demodulation: Frequency discriminator Super heterodyne receiver		
2	Title	Pulse Modulation	1	06

(Autonomous Institute Affiliated to University of Mumbai)

	2.1	Sampling process. Pulse Amplitude modulation, SNR, Noise BW trade off		
	2.2	Pulse code modulation (PCM),Differential pulse code modulation.		
	2.2	Delta modulation, Noise considerations in PCM, Time Division multiplexing, Digital Multiplexers		
3		Source Coding and Error correction coding	1	08
	3.1	Uncertainty, Information, Entropy, Source coding theorem, Huffmann encoding, Shannon Fano coding		
	3.2	Discrete memory less channels, Channel capacity Theorem, Linear block codes, Convolutional codes (Shift Register approach and Code tree)		
4	Title	Baseband Pulse Transmission	1,2	8
	4.1	Based band receiver, Probability of error of integrate and		
		dump receiver, Matched filter, optimum filter		
	4.2	Line coding and Power spectral density (PSD) of line codes,		
		Inter symbol Interference and Nyquist criterion, Raised cosine filter,		
	4.3	Duobinary encoding, Introduction to linear and adaptive equalization		
5	Title	Pass band Digital Modulation schemes	1,2	12
	5.1	BPSK,DPSK,QPSK,M-aryPSK,QAM,BFSK,M-ary FSK,MSK-Principle of working, PSD and Signal space analysis		
	5.2	Digital Modulation tradeoffs, Probability of Error evaluations of various modulations.(derivation not expected)		
	5.3	Synchronization and Carrier Recovery for Digital modulation.		
6	Self	a.Case study (any one)		06
	Study	b. Research article (any one)		
		r 	Fotal	42+06

(Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Simulation and implementation of double sideband full carrier for various modulation index
2	Implement the frequency modulation circuit to obtain FM waveforms and calculate modulation index
3	Analyze effect of pre-emphasis and de-emphasis on FM waveforms
4	Implementation of natural sampling and reconstruction of waveforms
5	Implementation and detection of pulse amplitude modulation.
6	Implementation of Binary Phase Shift Keying
7	Implementation of Binary Frequency shift keying
8	Duo binary Encoder
9	Simulation of digital modulation scheme and analysis of Power spectral density
10	Simulation and analysis of signal space of various modulations in presence of noise
11	Signal transmission through Raised cosine filter and eye pattern analysis
12	Simulation of OFDM
13	Mini project in analog/pulse/digital modulation methods

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Communications	4th	Haykin S	John Wiley	2001
	Systems			and Sons	
2	Principles of Communication Systems	2nd	Taub H. and Schilling D.L	Tata McGraw Hill	2001

(Autonomous Institute Affiliated to University of Mumbai)

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital	3rd	Haykin S	John Wiley	2001
	Communication.			and Sons	
2.	Communication	4th	Proakis J. G.	Pearson	2002.
	Systems Engineering		and Salehi M.	Education	
3.	Digital and Analog	4th	B.P.Lathi	Oxford	2017
	Communication				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	P	Total
		3	0	2	6	11	3	0	1	4
PC		Examinatio				inatio	n Scheme			
	Control Systems	Comp	onent	ISI	E (%)	MS	SE (%)	ES	SE (%)	Total
EC302		The	eory		20		20		60	100
		Laboratory			80				20	100

Pre-requi	site Course Codes, if any. MA101: Engineering Calculus
	MA102: Differential Equations and Complex Analysis
	EC 101: Digital Systems and Microprocessors
	EC 203: Probability and Stochastic Processes
	EC 204: Electronic Instruments and Measurement Lab
Course O	bjectives: To develop a system for real life application by applying the concepts of control
system the	eory and allied techniques for system performance evaluation.
Course O	utcomes (CO): At the end of the course students will be able to
EC202 1	Classify different types of control systems, component of control system and formulate
EC302.1	mathematical modeling of the given system.
EC302.2	Apply various methods for representation of the given control system.
EC302.3	Analyze the transient and steady state behavior of given system for standard test inputs.
EC302.4	Analyze the stability of systems in time domain and frequency domain.
EC302.5	Discuss the concept of controllability and observability using state variable model.
EC302.6	Evaluate the system performance with the use of compensators & controllers.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC302.1	3				2			3	3	2	2	2
EC302.2		3			2			3	3	2	2	2
EC302.3		3			2			3	3	2	2	2
EC302.4		3			2			3	3	2	2	2
EC302.5		3			2			3	3	2	2	2
EC302.6	3				2	2		3	3	2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

			(• • • • • • • • • • • • • • • • • • •							
	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3				
EC302.1	1	1	2		-					
EC302.2	1	1	2		-					
EC302.3	1	1	2		2					
EC302.4	1	1	2		2					
EC302.5	1	1	2		2					
EC302.6	1	1	2		2					

(Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate✓	Create

Module	Unit No	Topics	Ref.	Hrs.
<u> </u>	Titla	Introduction to control system and system Modeling		
1	1 1	Introduction to control system and system wouldning	12	10
	1.1	Definition of system Notion of feedback Open loop and closed	1,2	10
		loop systems: feedback and feed forward control structure:		
		Examples of control systems.		
	1.2	Dynamic Response: Standard test signals: Transient and steady	1.2	
	-	state behavior of first and second order systems; Generalized	,	
		error coefficients, steady state errors in feedback control systems		
		and their types.		
	1.3	Control System Modeling: Types of model's Impulse response	1,2	
		model, State variable model, Transfer function model, Modeling		
		of electrical systems and translational mechanical systems.		
2	Title	Representation of Control System and State Space Analysis		10
	2.1	Block diagram representation of systems, Block diagram	1,2	
		reduction methods, closed loop transfer function, signal flow		
		graph. Mason's gain rule		
	2.2	State Space Analysis: Concepts of state space, State equations,	1,2	
		State transition matrix, properties of state transition matrix,		
		Solution of homogeneous systems.		
	2.3	Controllability and Observability: Concept of controllability,	3,4	
		Controllability analysis of LTI systems, Concept of observability,		
		Observability analysis of LTI systems using Kalman approach.		
3	Title	Time Domain System Stability Analysis		8
	3.1	Concepts of Stability Concept of absolute, relative and robust	1,2	
		stability		
	3.2	Routh-Hurwitz stability criteria	1,2	
	3.3	Root Locus Analysis: Root-locus concepts; General rules for	1,2	
		constructing root-locus, Root-locus analysis of control systems.		
4	Title	Frequency Domain System Stability Analysis		8
	4.1	Relation between time and frequency response	1,2	
	4.2	Bode Plot: Magnitude and phase plot, Method of plotting Bode	1,2	
		plot; Stability analysis by using Gain and phase margins on the		
		Bode plots		
	4.3	Polar plots, Nyquist stability criterions; Nyquist plot; Gain and	1,2	
		phase margins.		
5	Title	Compensators & Controllers		6

(Autonomous Institute Affiliated to University of Mumbai)

	5.1	Types of compensators, Realization of basic compensators -	1,2	
		cascade compensation in time domain and frequency domain.		
	5.2	Controllers: Concept of ON/OFF controllers; Concept of P, PI,	1,2	
		PD and PID Controllers.		
	5.3	Advanced Control Systems: Introduction to Robust Control,	3,4	
		Adaptive control and Model predictive control, Neuro- fuzzy		
		controllers.		
6	Self-	Examples on open loop and closed loop control system, Modeling	1,2,3,	
	Study	of rotational mechanical systems, Pole placement using state	4,5	
	-	feedback Popov-Belevitch-Hautus (PBH) test in state space,		
		Design of lag, lead and lag-lead compensator using Bode plot and		
		Root locus techniques, Design of real-life applications of control		
		system.		
			Total	42

Laboratory Component:

Exp.	Experiment Details	Marks
No.		CO
1	To obtain the characteristics of control system components:	05
	i. To plot the Synchro transmitter characteristics and Synchro transmitter and	CO1
	receiver as an error detector.	
	ii. To plot characteristics of Potentiometer and its loading effect for different	
	conditions of load.	
2	To demonstrate the working of real-life feedback control system and obtain	05
	their characteristics:	CO1
	i. To plot Speed torque characteristic of DC servo motor.	
	ii. To determine the line and load regulation characteristics of AC servo	
	voltage stabilizer at different line and load conditions and observe the	
	mechanism of AC voltage stabilization as an example of closed control	
	system.	
3	To develop a program in Matlab/Scilab/LabVIEW:	05
	i. To define the given closed loop transfer function of system and plot their	CO2
	poles & zeros on s-plane.	
	ii. To reduce the given control system block diagram or signal flow graph.	
4	To develop a program in Matlab/Scilab/LabVIEW:	10
	i. To obtain the step response of a given first/second order control system and	CO3
	obtain its time domain parameters from this step response. Compare these	
	results with mathematical calculations.	
	ii. To determine step response for a Type 0, Type 1, Type 2 systems and find	
	error coefficients.	
	iii. To find solution for a given control system described by its state space	
	equation in terms of state transition matrix, zero input response, zero state	
	response, complete response.	
5	Develop a program in Matlab/Scilab/LabVIEW:	10
	i. To obtain the root locus of a system described by its Transfer Function with	CO4

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	unity feedback, Comment on the stability of this given control system.									
	Compare these results with mathematical calculations.									
	ii. To find gain margin and phase margin of the system described by its									
	Transfer Function with unity feedback using Bode/Nyquist plot. Comment on									
	the stability of this given control system. Compare these results with									
	mathematical calculations.									
6	Develop a program in Matlab/Scilab/LabVIEW:	10								
	i. To find whether a given control system described by its state space	CO5								
	equation is controllable or not, observable or not, to find rank of matrix and									
	using rank comment on system controllability and observability.									
	ii. To design a controller and observer via state space.									
7	Evaluate the effect of Compensator/PID controller on performance of the	5								
	control system.	CO6								

ISE Evaluation: CO1-CO6

Mini-Project: Identify the model of control system for real life application and demonstrate controlling action for the same.

This is group activity. Students will form a group of minimum 3 students. Students will develop the block diagram of the system first, then design each block using appropriate components. Simulate the complete block diagram using any tool like Matlab, Scilab or LabVIEW. The duration of this activity is a complete semester, but evaluation will be done in phases and rubrics designed. In the first phase students will develop the block diagram for the given problem statement. In the second phase students will develop the block diagram and simulate each of the block diagrams and test it for input-output relationship. In the third phase students will interface all the designed blocks to obtain final input-output relationship of the system. Hardware implementation is optional.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems Engineering	Fifth	I. J. Nagrath, M. Gopal	New Age	2012
				International	
2	Modern Control Engineering	Fifth	Ogata. K	Prentice Hall	2010
			_	of India	

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems: Principle and design	First	M. Gopal	Tata McGraw Hill	1998
2	Modern Control System	Eleventh	Richard C. Dorf and Robert H. Bishop	Pearson	2013
3	Control Systems	Sixth	Norman Nise	John Wiley &	2011
	Engineering			Sons	
4	Linear Control System	First	Constantine H.	Mcgraw-Hill	1975

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Analysis and Design:			Houpis and John J.								
	Conventional and Modern			Γ)'Azzo)						
Co	ourse		Teachin	g Sch	eme (Hrs/w	eek)	Cı	Credits Assigned			
(Category)		Course Name	L	Τ	P	0	E	L	Т	P	Total	
Code												
			3	0	2	5	10	3	0	1	4	
I	PC	D' '4 10' 1	Examination Scheme									
		Digital Signal	Compo	Component		ISE (%)		E (%)	ESE (%)		Total	
EC	C 303	Processing	Theo	Theory		20		20	60		100	
			Laboratory		80				20		100	

Pre-requisit	e Course Codes, if any.	EC207: Signals and Systems					
Course Obje	ective: To develop mathematic	cal foundation of system and design digital filters					
Course Outcomes (CO): At the end of the course students will be able to							
EC303.1	Classify and perform various	Classify and perform various operations on signals and systems.					
EC303.2	Apply DFT properties and illustrate FFT algorithms.						
EC303.3	Apply Z Transform on discre	ete time signals.					
EC303.4	Analyze LTI System using Z	Z Transform.					
EC303.5	Design and Realize Digital f	ilters.					
EC303.6	Analyze Multirate Signal Pro	ocessing.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC303.1	3	1	2		2							
EC303.2	1	1	2		2							
EC303.3	1	1	2		2							
EC303.4	1	1	2		2							
EC303.5	1	1	2		2							
EC303.6	1	1	2		2							2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC303.1		2				2	
EC303.2		2				2	
EC303.3		2				2	
EC303.4		2				2	
EC303.5		2				2	
EC303.6		1				2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

(Autonomous Institute Affiliated to University of Mumbai)

RememberUnderstand✓Apply✓	Analyze 🖌 Evaluate	Create
---------------------------	--------------------	--------

Module	Unit	Topics	Dof	Hrs
No.	No.	Topics	Nel.	1115.
1	Title	Overview of Discrete Time Signals	6,7,8	
	1.1	Sampling of Continuous Time Signal, Standard Discrete Time Signals: Impulse Signal, Unit Step, Unit Ramp, Sinusoidal, Exponential.		08
	1.2	Classification of Signals: Deterministic and non-deterministic, Periodic and a periodic, Symmetric (even) and Asymmetric (odd), Energy and Power, Causal and Anti-causal signals.		-
	1.3	and Multiplication, Convolution (Linear and Circular), Correlation		
2	Title	Discrete Fourier Transform (DFT)	1, 3	12
	2.1	Discrete Time Fourier transform (DTFT), Discrete Fourier Transform (DFT), Properties of DFT, Inverse DFT.		
	2.2	Fast Fourier Transform: Radix-2 Decimation in Time Fast Fourier Transform (DIT-FFT) and Decimation in Frequency Fast Fourier Transform (DIF-FFT) algorithms, Real and Complex Calculations using FFT, Linear and Circular Convolution using FFT,		
	2.3	Filtering of long data sequence, Overlap Add Method, Overlap Save Method		
3	Title	Z-Transform	6,7	04
	3.1	Z-Transform of discrete time signals, Properties of Z-Transform, Relation between Z-Transform and DTFT.		
	3.2	Inverse Z-Transform, Long division Method, Partial Fraction Expansion Method		
4	Title	Linear Time Invariant (LTI) Systems	1,4	08
	4.1	Classification of systems: Static and dynamic, time variant and time invariant, linear and nonlinear, causal and non-causal, stable and unstable systems.		
	4.2	Impulse Response, Transfer Function, Differential Equation, Stability of Systems, Frequency Response, Solution of Differential Equation using Z-Transform		
	4.3	LTI systems as frequency-selective filters like; Low pass, High pass, Band pass, Invertibility of LTI systems, Minimum-phase, Maximum-phase, Mixed-phase systems		
5	Title	Design of Digital filters and Implementation	1,2	10
	5.1	Design of Infinite Impulse Response (IIR) filters using Impulse Invariant Method and Bilinear Transformation Method, Butterworth and Chebyshev Type I filter design.		

(Autonomous Institute Affiliated to University of Mumbai)

	5.2	Concepts of Finite Impulse Response (FIR) filter, symmetric and anti-symmetric FIR filter, FIR filter design using Window method and Frequency sampling method.		
	5.3	Realization structures for IIR and FIR filters using direct Form		
		Realization, cascade, parallel structures; Linear Phase Realization,		
		Frequency Sampling Realization.		
6	Self-	1.Multirate Signal Processing: Down-sampling and Up-sampling	1,5	*5
	Study	by integer factors; Decimator and Interpolator, Sampling rate		
		conversion by non-integer factor.		
		2. Application of Filter: Sub-band filters.		
			Total	42+*5

Laboratory Component

Sr. No	Title of the Experiment
1	Discrete Convolution and Correlation
2	Discrete Fourier Transform
3	Fast Fourier Transform
4	Linear Filtering using Overlap Add Method/ Overlap Save Method.
5	Design of Butterworth IIR Filter using Impulse invariant method
6	Design of Butterworth IIR Filter using Bilinear Transformation method
7	Linear phase FIR Filter design using Windowing method
8	Linear phase FIR Filter design using Frequency sampling method
9	Multirate Signal Processing
10	Mini Project on real Time DTSP application

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processing:	Fourth	J. Proakis, D. G.	Pearson	2014
	Principles, Algorithms and		Manolakis, and D. Sharma	Education	
	Applications				
2	Digital Signal Processing	Fourth	Ramesh Babu	Scitech	2014
3	Digital Signal Processing	-	S.Salivahanan, A	Tata	2010
			Vallavaraj, C Gnanapriya	McGraw Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	Second	Second Alan V Oppenheim, Alan		2002
			S, Willsky and A Hamid		
			Nawab		
2	Signals and Systems	Third	Simon Haykin and Barry	John Wiley	2002
			Van Veen	& Sons	
3	Theory and	Second	L. R. Rabiner and B. Gold	Prentice-	2006
	Applications of Digital			U_11	
	Signal Processing			11411	
4	Multirate Systems and	First	P.P. Vaidyanathan,	Pearson	1992
	Filter Banks				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Т	Р	0	Е	L	Т	Р	Total
		3	0	2	6	11	3	0	1	4
PC					Examination Scheme					
	Electromagnetic	Comp	onent	IS	E (%)) MS	SE (%)	ES	E (%)	Total
EC304	Engineering	The	eory		20		20		60	100
		Labor	atory		80				20	100

Pre-requi	isite Course Codes, if any.	MA101: Engineering Calculus
		MA102: Differential Equations and Complex Analysis
		MA201: Linear Algebra
Course O	bjective: To teach fundamental	ls of Electromagnetic Waves
Course O	Outcomes (CO): At the end of the	he course students will be able to
EC304.1	Apply basic laws of electroma	gnetic and Maxwell's equations.
EC304.2	Illustrate the behavior of EM v	waves and travelling of waves in free space as well as media.
EC304.3	Solve problems related to the	propagation of electromagnetic waves.
EC304.4	Discuss the types of antennas	and their parameters.
EC304.5	Discuss types of radio wave pr	ropagation.
EC304.6	Design applications using Elec	ctromagnetic Waves theory.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC304.1	1	1	2		2					3		
EC304.2	1	1	2		2							
EC304.3	1	1	2		2					3		
EC304.4	1	1	3		2					1		
EC304.5	1	1	2		2							
EC304.6	1	1	3		2					2		3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC304.1		2			2	
EC304.2		2			2	
EC304.3		2			2	
EC304.4		2			2	
EC304.5		2			2	
EC304.6		1			1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create
-----------	-------------	--------	----------	----------	--------

(Autonomous Institute Affiliated to University of Mumbai)

Module	Unit	Topics	Dof	Uma
No.	No.	Topics	Rel.	пrs.
1	Title	Coordinate system transformation and vector calculus		
	1.1	Cartesian, cylindrical and spherical coordinate, Differential length,	2	3
		area and volume, line surface and volume integrals.	ĺ	
	1.2	Del Operator, Gradient of scalar, Divergence of a vector and		
		Divergence Theorem, Curl of a Vector and Stoke's Theorem,	ĺ	
		Laplacian Theorem, Classification of a Vector Field.		
2	Title	Basic Laws of Electromagnetic and Maxwells Equations	1	9
	2.1	Coulombs law, Electric fields due to continuous charge distributions,	ĺ	
		Gauss law and its applications, Electric potential (Magnetic vector	ĺ	
		potential and Electrical Scalar Potential), relationship between E and	ĺ	
		V, Poisson and Laplace equations, Bio-Savarts law, Amperes law.	ĺ	
	2.2	Boundary conditions for static electric and magnetic fields		
	2.3	Faradays Law, Displacement current, Maxwells Equations: Integral		
		and differential form for static and time varying fields and its	ĺ	
		interpretation		
3	Title	Electromagnetic Wave Propagation	1,2	9
	3.1	Wave equation: Derivation and its solution in Cartesian co-ordinates.		
	3.2	Solution of wave equations: Partially conducting media, perfect		
		dielectrics and good conductors, Concept of Skin Depth.	ĺ	
	3.3	Electromagnetic Power: Poynting Vector and power flow in free		
		space and in dielectric, conducting media.		
	3.4	Polarization of wave: Linear, Circular and Elliptical.		
	3.5	Propagation in different media: Behavior of waves for normal and		
		oblique incidence in dielectrics and conducting media.		
4	Title	Waveguide	1,2	6
	4.1	Wave propagation in parallel plane waveguide (No derivation	ĺ	
		expected), Analysis of waveguide general approach (No derivation	ĺ	
		expected), in waveguide.		
	4.2	Rectangular waveguide, Modal propagation in rectangular	ĺ	
		waveguide, Surface currents on the waveguide walls, Field	ĺ	
		visualization, Attenuation.	<u> </u>	
5	Title	Transmission Lines	1,2	9
	5.1	Power frequency lines: Representation, losses and efficiency in	ĺ	
		power lines, effect of length, calculation of inductance and	ĺ	
		capacitance.		
		Radio frequency lines: Representation, propagation constant,		
		attenuation constant, phase constant, group velocity, input		
		impedance, characteristic impedance, trade-off between attenuation		
		and power transfer, reflection coefficient, standing wave ratio,		
		VSWR, ISWR, ABCD parameters of transmission line.		

(Autonomous Institute Affiliated to University of Mumbai)

	5.2	Smith Chart: Impedance locus diagram, impedance matching.		
6	Title	Applications of Electromagnetics	2,3	6
	Self-	Xerography. Laser printer, Faraday's cage, lightning, RF MEMS,	1,2,6	06
	Study	Magnetic levitation, Metamaterials, RFID, Stealth aircraft, remote		
	-	sensing, radio astronomy, EMI and Electromagnetic Compatibility,		
		Different types of antennas.		
Total				42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Basic operations on scalar and vectors
	Working with Numbers: Scalars and Vectors using any simulation platform or Python.
	Working with Complex Numbers using any simulation platform or Python.
	Working with Matrices using any simulation platform or Python.
2	Curl and Divergence
	Numerical Computation of Divergence and Curl.
	Numerical Computation of Divergence and Curl for a Current Carrying Wire.
3	Write a program that displays the distribution of the electric potential due to an electric
	dipole with a moment located at the origin of a spherical coordinate system.
4	Numerical Integration and Calculating the Electric Field from a Ring of Charge.
5	3-D and 2-D radiation patterns of a Hertzian dipole using MATLAB/Python.
6	Antenna parameters
	Visualization of a wireless system with two antennas.
	Radiation patterns of a small loop antenna.
	Radiation patterns of a quarter-wave monopole.
7	Waveguide: Verify the relationship between wavelength of an EM wave in air and inside a
	rectangular waveguide.
8	Simulating the Two-ray Propagation Model in any simulation platform or Python.
9	Using Virtual Lab: Introduction to Smith chart and its application for the unknown
	impedance measurement using virtual lab IIT K
10	Measurement of Frequency and wavelength of a waveguide using Microwave bench setup.
11	Using Virtual Lab: Study of field pattern of various modes inside a rectangular waveguide
	using virtual lab IIT K
12	Case Study- The student is required to develop a simple tool to carry out unit conversions
	that are associated with EM-related calculations.

Text Books :

Sr. No.	Title Editio		Authors	Publisher	Year
1	Electromagnetic Waves	Third	R.K. Shevgaonkar	Tata McGraw Hill	2009
2	Principles of	Sixth	Matthew N.O.	Oxford International	2015
	Electromagnetics		Sadiku	Student	

(Autonomous Institute Affiliated to University of Mumbai)

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Engineering	Third	W.H. Hayt, and J.A.	McGrawHill	2006
	Electromagnetics		Buck		
2	Electromagnetic Waves and	Second	Edward C. Jordan	Pearson	2006
	Radiating Systems		and Keth G. Balmin	Publications	
3	Engineering	Third	Nathan Ida	Springer	2015
	Electromagnetics			Publications	
4	Antennas & Wave	Fourth	J.D. Kraus, R.J.	McGrawHill	2011
	Propagation		Marhefka, and A.S.		
			Khan		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teach	ing Sc	heme	(Hrs/v	week)	C	redits	s Assign	ied
(Category)	Course Name	L	Т	P	0	Ε	L	Т	P	Total
Code										
		0	1	2	1	4	0	1	1	2
(SBC)	Java Programming Lab	Examination Scheme								
		Comp	onent	IS	E (%)	M	SE (%)	ES	E (%)	Total
EC305A		Theory								
		Labor	atory		50				50	100

Pre-requisite Cour	rse Codes, if any.	CS101: Problem Solving using Imperative Programming				
		CS102: Problem Solving using OOPs				
Course Objective	: To learn Object-O	Driented programming paradigm using Java programming				
	language.					
Course Outcomes (CO): At the end of the course students will be able to						
EC305.1 Demons	strate programming us	sing basic constructs of JAVA.				
EC305.2 Apply I	nheritance and polym	orphism for a given scenario.				
EC305.3 Apply a	305.3 Apply abstraction and exception handling to create an efficient program.					
EC305.4 Use Ger	neric classes and colle	ection for solving problem.				
EC305.5 Develop	o a mini project based	on the real-world problem.				
Nata						

Note:

*= Tutorial-50 marks and Mini Project-50 marks (Preferably based on real-world problem statement from Industry/Academia/Research)

#= oral exam-20 marks and Lab experiment-30 marks

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC305.1	3				2							2
EC305.2	2				2							2
EC305.3	2				2							2
EC305.4	2				2							2
EC305.5	2	1	1	1	2	1			2	2		2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC305.1		2		2		
EC305.2		2		2		
EC305.3		2		2		
EC305.4		2		2		
EC305.5		2		2		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create✓

Theory Component

Module	Unit	Tonics		Hrs
No.	No.	Topics	KUI.	111 5.
1	Title	Introduction to JAVA	1,2,3	3
	1.1	Fundamentals of Java Programming: Classes, JDK, JRE, JVM,		
		Unicode system, I/O using Scanner class and Buffered Reader		
		class.		
	1.2	Instance variables, Methods, Constructors.		
	1.3	Object class, Nested class, Access Specifiers, Abstract Classes		
		and Wrapper Classes.		
2	Title	OOP Concepts Mapping to JAVA	1,2,3	4
	2.1	Inheritance (IS – A), Aggregation & Composition (Has – A)		
		Method overloading & overriding, this, super, final keyword,		
		Static.		
	2.2	Autoboxing and Unboxing, Polymorphism.		
	2.3	Packages and Interfaces: Package concept, creating user defined		
		package, Access control protection, Interface.		
3	Title	Exception Handling and Multithreading	1,2,3	4
	3.1	Try and catch block, Multiple catch block, Nested try, finally		
		block, Throw, Throws keywords, Exception propagation,		
		Custom exception.		
	3.2	Create thread using Thread and Runnable class. Thread methods,		
		schedule, sleep, join, Thread priority, Thread group, perform		
		multiple tasks using multiple thread Thread synchronization.		
4	Title	Generics and Collection	1,2,3	3
	4.1	Creating Generic Classes, Generic Methods, Bounded Type		
	4.2	Collection's framework, methods of collection interface (Array		
		list, Linked list, Queue etc.)		
			Total	14

Laboratory Component, if any.

Sr. No	Title of the Experiment
1	Program on I/O using command line arguments, scanner class, Buffered Reader etc.
2	Program on Constructor, types of constructors and constructor overloading.
3	Program on Polymorphism, Runtime polymorphism.
4	Program on Inheritance, Abstract Class, Interface.
5	Program on Nested Class, Aggregation, Composition.

(Autonomous Institute Affiliated to University of Mumbai)

6	Program on Multithreading.
7	Program on Exception Handling. (built in and User defined)
8	Program on Package and access modifiers.
9	Program on Generics
10	Program on Collection

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Java Programming	First	Ralph	Tata McGraw-	2009
	From the Group Up		Bravaco, Shai	Hill	
			Simoson		
2	Java The Complete	Eleventh	Herbert	Tata McGraw-	2019
	Reference		Schildt	Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	An introduction to	Third	Jaime Nino,	Wiley Student	2008
	Programming and Object		Frederick A. Hosch	Edition	
	Oriented Design using Java				
2	Java Programming A	First	C Xavier	Tata McGraw-	2011
	Practical Approach			Hill	
3	Java [™] Programming	Fourth	Ken Arnold, James	The (Java	2005
	Language		Gosling, David	Series) by Sun	
			Holmes		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Е	L	T	Р	Total
	Internet of Things Laboratory		1	2	2	5		1	1	2
SBC		Examination Scheme								
		Comp	I	ISE%		MSE%		SE%	Total	
FC305B		Theory								
ECJUSD		Laboratory			75				25	100

Pre-requisit	e Course Codes, if any.	EC101: Digital Systems and Microprocessors
		EC201: Computer Architecture and Organization
		EC206: Microcontrollers
Course Obje	ective: This course provide	s an introduction to the fundamental concepts, technologies,
data commur	nication protocols, data anal	ytics, security and applications of the Internet of Things
(IoT).		
Course Outo	comes (CO): After successi	ful completion of the course, student will be able to
EC305B.1	Identify the key challenge	s and opportunities in IoT development and deployment.
EC305B.2	Acquire real world signals concept of IoT	and perform remote process monitoring utilizing the
EC305B.3	Apply appropriate commu	inication protocols for IoT devices.
EC305B.4	Evaluate security risks and	d apply relevant measures to protect IoT systems

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC305B.1	2	2	2									
EC305B.2	2	2	2	2								
EC305B.3	2	2	2	2								
EC305B.4	2	2	2	2								

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PEO1	PEO2	PEO3	PSO1	PSO2
EC305B.1	1	1	1		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

EC305B.2	1	1	1	
EC305B.3	1	1	1	
EC305B.4	1	1	1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand Apply Analyze Evaluate Create	Remember	Understand	Apply	Analyze	Evaluate	Create
---	----------	------------	-------	---------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Fundamentals of IOT Systems:		04
	1.3	Evolution of Internet of Things, Enabling Technologies, IoT Architectures: M2M, IoT configurations, IoT architecture and components, Gateways, Fog computing, Edge and Cloud in IoT, Functional blocks of an IoT ecosystem, Sensors, Actuators, Smart Objects and Connecting Smart Objects	1,2	
2		Functionality based IoT Protocol Organization:		07
	2.1	Connectivity (6LoWPAN), Communication/ Transport: WiFi, Bluetooth, Zigbee, Z-wave, Data Protocols: MQTT, CoAP, Websocket, Node. Device Management: JSON-LD, Web Thing Model, Multilayer Framework.	3	
3	Title	Security, trust, and privacy issues in IoT		03
	3.1	IoT security challenges and vulnerabilities, Authentication and access control in IoT, Distributed Denial of service (DDoS), Privacy considerations and regulation	3	
		Self study on Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries,IOT application in Home automation, Agriculture, Healthcare.	1,2	
			Total	14

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
------------	-------	---------	--------	-----------	------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

1	Internet of Things: Architecture and	First	Raj Kamal	McGraw Hill	2017
	Design Fincipies	cultion			
2	Internet of Things, "A Hands on Approach		Vijay Madisetti, ArshdeepBahga	UniversityPress	,2015.
3	The Internet of Things : Enabling Technologies, Platforms and Use Cases	-	Pethuru Raj and Anupama C. Raman	CRC Press	2017

Suggested List of Laboratory Experiments:

- 1. Getting started with IoT development board in the IDE and GPIO Interfacing and programming
- 2. IoT Sensor Integration: Design and implement a small-scale IoT system that includes sensors such as temperature, humidity, and light sensors. Collect data from these sensors and transmit it wirelessly to a central hub or cloud platform for analysis and visualization.
- 3. Communication Protocols:
 - Implement a simple IoT system using different communication protocols (e.g., MQTT, CoAP).
 - Set up a broker or server to handle the communication between IoT devices.
 - Develop programs on IoT devices to publish and subscribe to sensor data using the chosen protocol.
- 4. Controlling devices remotely using Bluetooth link, WiFi link
- 5. IoT Data Analytics:
 - Collect real-time sensor data from IoT devices or use publicly available IoT datasets.
 - Perform data preprocessing, cleaning, and transformation.
 - Apply data analytics techniques such as clustering or regression to extract insights from the IoT data.
- 6. IoT Security and Privacy:
 - Explore security vulnerabilities in an IoT system.
 - Implement security measures such as encryption, authentication, and access control.
 - Conduct penetration testing to identify and address potential security risks.
- 7. IoT Application Development:
 - Choose an IoT application domain (e.g., smart home, healthcare, agriculture).
 - Develop a prototype application using appropriate hardware components, sensors, and actuators.
 - Integrate the application with cloud services or a mobile app for remote monitoring and control.
- 8. Development of Android applications suitable for IoT
- 9. Implementing certificate keys to make your application secure on the cloud
- 10. Developing Voice App for IoT device

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sem-VI

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teachin	g Sch	eme (l	Hrs/w	veek)	C	redits Assigned			
(Category)	Course Name	L	Т	Р	0	Е	L	Т	Р	Total	
Code											
		3	0	2	6	11	3	0	1	4	
PC	Fundamentals of			Ex	amin	ation	Schem	ieme			
	Antenna	Component		ISE	(%)	MS	MSE (%)		E(%)	Total	
EC306A		Theory		2	0		20	60		100	
		Labora	Laboratory		0			20		100	

Pre-requisit	e Course Codes, if any. EC304: Electromagnetic Waves							
Course Obje	Course Objective: The objective of the course is to provide a fundamental understanding of							
Antennas								
Course Outcomes (CO): At the end of the course students will be able to								
EC306.1	Calculate the fundamental parameters of Antenna.							
EC306.2	Describe fundamental theory of antennas.							
EC306.3	Select antenna based on applications.							
EC306.4	Evaluate antenna based on applications.							
EC306.5	Design Antenna Arrays.							
EC306.6	Design antenna based on given requirements.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC306.1	2	3						2	2	2		
EC306.2	2	3						2	2	2		
EC306.3		2						2	2	2		
EC306.4		2		2				2	2	2		
EC306.5		2		2				2	2	2		
EC306.6	2	1						2	2	2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC306.1		2				-	
EC306.2		2				2	
EC306.3		2				2	
EC306.4		2				2	
EC306.5		2				2	
EC306.6		1				1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

(Autonomous Institute Affiliated to University of Mumbai)

Remember	Understand	Apply	Analyze	Evaluate	Create

Module	Unit	Topics	Ref	Hrs.
No.	No.		•	
1		Fundamental Concepts:	1	08
(CO1)	1.1	Introduction, types of Antennas, Radiation mechanism, Poynting vector, Steradian concept, Power intensity		
	1.2	Antenna Parameter: Radiation pattern, Radiation power density, Radiation Intensity, Gain, Directivity, HPBW, FNBW, Beam efficiency, Bandwidth, Polarization, Input Impedance, Reflection coefficient, Return loss, VSWR, Antenna Efficiency, Effective Aperture, Communication link and Friis transmission equation.		
2		Radiation from wires and loops	1	10
(CO2, CO3)	2.1	Introduction, Infinitesimal dipole: Radiation zones, Total radiated power, Radiation resistance, Directivity, Effective area, Short dipole, Finite-length dipole: Radiated power, Radiation resistance, Directivity, Effective area, Half-wave dipole and its properties, Loop antenna.		
3		Aperture Antennas	1	06
(CO3, CO4)	3.1	Introduction, Field equivalence principle, Love's equivalence principle, Electrical and magnetic conductor equivalence principle, Computation of field quantities of aperture antenna, Relation between wire and aperture antennas, Horn antenna design principle.		
4		Antenna Arrays	1	10
(CO5)	4.1	Introduction, Two-element array, Example problems, Pattern multiplication concept, N-element array, Uniform array, Array factor, Broad-side and end-fire arrays, Phased array, Directivity and pattern characteristic of linear uniform array, non-uniform array, Binomial array, Dolph-Chebyshev array concept, Design principle of Chebyshev array and examples, Planar arrays		
5		Microstrip Antennas		
(CO6)	3.1	Introduction: Rectangular Patch, Circular Patch, Parametric study, Circularly polarized antennas, Axial Ratio, MSA suspended Configuration.	1,4	08
	3.2	MSA Arrays and Feed Networks, Corporate and Series Feeds		
6 (Self Study)		Advanced Antennas: Reflector antenna, Dielectric Resonator antenna, Metamaterial based antennas, Wearable antenna, Reconfigurable antennas, Ultra-wideband antennas, Smart Antennas		06
		· · · · · · · · · · · · · · · · · · ·	Total	42

(Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Design a Dipole Antenna using HFSS
2	Design a monopole Antenna using HFSS
3	Design a Horn Antenna using HFSS
4	Design a Helical Antenna using HFSS
5	Design a Microstrip Patch Antenna
6	To calculate and infer various fundamental parameters of antenna like Radiation
	pattern, Radiation power density, Radiation Intensity, Gain, Directivity, HPBW and
	FNBW using Scilab.
7	To calculate the power delivered to the Receiver Antenna.
8	To design a Pyramidal Horn Antenna in E-plane and H-plane
9	To show Pattern Multiplication phenomena in an Antenna using two infinitesimal
	dipoles.
10	To design Array factor pattern of N-element of uniform amplitude of Broadside Array.
11	To design Array factor pattern of N-element of uniform amplitude of End-fire Array
12	To design Array factor pattern of N-element of non-uniform amplitude of Broadside /
	End-fire Array using Binomial Array method.
13	To design Array factor pattern of N-element of non-uniform amplitude of Broadside
	/End-fire Array using DolphTschebyscheff Array method.

Text Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antenna Theory: Analysis	Constantine A.	Fourth	Wiley	1982
	and Design	Balanis			

Reference Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antennas & Wave	J.D. Kraus, R.J.	Fourth	McGraw Hill	2011
	Propagation	Marhefka, and			
		A.S. Khan			
2	Handbook of Microstrip	R. James and P.S.	Third	Peter	1989
	Antennas	Hall		Peregrinus	
3	Antennas and Radio Wave	R. E. Collin	Fourth	McGraw-Hill	1985
	Propagation				
4	Broadband Microstrip	Girish Kumar and	First	Artech House	2003
	antennas	K.P. Ray			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Tea	ching Sc	heme (Hrs/w	eek)		Cred	its Assigned	l	
(Category) Code	Course Name	L	Т	P	0	E	L	T	Р	Total	
		3	0	2	5	10	3	0	1	4	
(PC)	Fundamentals of Power	Examination Scheme									
		ComponentISE (%)MSE (%)ES				ESE(%)	Total				
ET306B	Electronics	Theory			20		20		60	100	
		L	aborato	ry	5	50			50	100	

Pre-requisit	e Course Codes, if any. Basic Electrical Engineering							
Course Obje	Course Objective: To impart knowledge on the basic topology, operation and analysis using							
performance parameters of power electronic converters.								
Course Outcomes (CO): At the End of the course students will be able to								
ET306.1	Interpret tradeoffs in power semiconductor switches.							
ET306.2	Analyze various single/ three phase AC-DC power converter circuits							
ET306.3	Illustrate the operating principle and construct a various type of DC-DC converters.							
ET206 4	Analyze various single/ three phase DC-AC power converter circuits and understand							
E1300.4	their typical applications.							
ET206 5	Understand the operation of AC voltage converters/ cyclo-converter by means of circuit							
E1300.3	topology and waveforms.							
ET-306-6	To learn using circuit simulation software for analysis and design of PE Converters							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET306.1	2											
ET306.2	2	3										
ET306.3		2.5										
ET306.4		3	2.5									
ET306.5	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PEO/PSO	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
ET306.1	2	1					
ET306.2	2				3		
ET306.3	2				2		
ET306.4	2				2		
ET306.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

(Autonomous Institute Affiliated to University of Mumbai)

Remember	Understand J	Apply J	Analyze J	Evaluate	Create

Module	Unit No	Topics	Ref.	Hrs.
1	Title	Power Semiconductor Devices		
1	1.1 1.2	Principle of operation, constructional features, characteristics, specification and applications of: MOSFET and IGBT, Wide Band-gap devices such as Ga-As and Silicon Carbide devices, traditional devices such as Power Diodes and Thyristor Family Loss Computation in Power Devices, Design of Heatsinks and other thermal issues reliability and Life of Power Devices		10
	1.3	Gate Driver Circuits for Controllable and Latching Power devices		
2	Title	AC to DC Converters		
	2.1	Designing Power Diode based Rectifier Circuits with Capacitive Filter Circuits		
	2.2	Understanding Working principles, topologies and applications of different Phase controlled rectifier circuits using Silicon Controlled Rectifier		10
	2.3	Understanding input side Harmonic issues in AC-DC Converters with the exposure to IEEE Std. 519, IEC-61000		
3	Title	DC to DC Converters		
	3.1	Principles of PWM based Power Control of switches for DC-DC Conversion, Buck, Boost and Buck-Boost Operation and topologies of non-isolated Primary Converters		12
	3.2	Design of Primary non-isolated DC-DC Converters using controllable switches with inductor and capacitor-based filter components		12
	3.3	Isolated DC-DC Converters such as Flyback, Forward and Push-pull Converter		
4	Title	DC to AC Converters		
	4.1	Voltage source inverters: Principle of operation and analysis of: Single phase Half bridge, full bridge inverters with R and R-L Load		07
	4.2	Operation of Three Phase Inverters with 120 degree and 180-degree conduction mode		
	4.3	Single Phase PWM Inverter		
5	Title	AC-AC converters		
	5.1	Principle of on-off and phase control – single-phase half and full wave AC voltage controller, three phase AC voltage controller.		06
	5.2	Buck, Boost and Buck-Boost Operation of Solid-state AC-AC Converters with Bidirectional Switches		
6	*Self- Study	Design of Magnetic Components for High Frequency Switched Mode Power Converters: Design of Transformer; Design of inductors and Design of Current Transformers		05
		Total Hours (*exc	luded)	45

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component (Indicative): To be completed minimum of 8 to 10 experiments with Computer Simulation and Laboratory Experimentation

Sr. No	Title of the Experiment
1	Operation and characteristics of an SCR/ IGBT
2-a	Demonstration of SCR firing circuits
2-b	Demonstration of MOSFET/IGBT Gate Driver Circuits
3	Single phase Line Commuted Semi-converter
4	Design and Verification of Diode Rectifier Circuits and its output side performance indices
5	To study Single phase Line Commutated Semi-converter and Fully controlled Converter with
5	Thyristors
6	Boost Converter based Power Factor Correction in Single Phase PWM Inverter
7	Evaluation of Course Project-1 through Presentation and Report
Q	Design and Demonstration of a Buck-Converter and Boost Converter in CCM and for CV and CC
0	Mode Operation
0	Demonstration of PWM three Phase bridge Voltage Source inverter with R Load, 120 degree and
,	180-degree conduction mode (Part-1)
10	Demonstration of PWM three phase bridge Voltage Source inverter with Sinusoidal Pulse width
10	Modulation (Part-2)
11	AC-AC Buck-Boost PWM Voltage Controller with bidirectional switches
12	To measure Harmonics and Power Quality Indices at the SPIT Electrical feeder for 24-hours using
12	Fluke/Hioki/Yokogawa Power Quality Analyzer and to make a consolidated report on the same.
13	Presentation of LAB-Course Project

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Power Electronics:	Third	Ned Mohan,	John Wiley and	2003
	converters, Application and		Undeland and	sons	
	design		Robbin		
2	Power Electronics Circuits,	Fourth	Rashid M.H.	Pearson	2004
	Devices and Applications			Education	
3	Power Electronics	Second	M D Singh and K.B	Tata McGraw	2006
			Khanchandani	Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Modern Power Electronics	First	Bimal K Bose	Pearson	2002
	and AC Drives			Education Asia	
2	Modern Power Electronics	Second	P.C Sen	S.chand	2005
3	Power Electronics	Eleventh	P.S.Bimbra,	Khanna	2003
				Publishers	
4	Power Electronics	First	S. K. Mandal	McGraw Hill	2014
				Education (India)	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course			Teaching Scheme (Hrs/week)						Credits Assigned			
(Category)	Course Name	L	T	P	0	E	L	T	Р	Total			
Code													
	Computer Communication	3	-	2	5	10	3	-	1	4			
PC		Examination Scheme											
		Compor	nent	ISE	(%)	MSI	E (%)	ESF	2(%)	Total			
EC307	Networks	Theory		2	0	2	20	6	60	100			
		Laboratory		5	0			5	0	100			

Pre-requisit	e Course Codes, if any. EC301: Analog and Digital Communication							
Course Obje	Course Objective: The objective of the course is to provide a fundamental understanding of							
ComputerCo	mmunication networks.							
Course Out	comes (CO): At the end of the course students will be able to							
EC307 1	Apply Conceptual understanding and functional aspects of computer communication							
EC307.1	and telecom networks.							
EC307.2	Analyze design and configure small and medium sized computer network that meets a							
EC307.2	specific need for communications.							
EC207.2	Simulate computer networks and analyze the simulation results including troubleshoot							
EC307.3	connectivity problem occurring at layers of TCP/IP model.							
EC207 4	Apply the principles behind the Modern Network approaches such as SDN NFV and							
EC307.4	IoT and security issues.							

CO-PO Correlation Matrix: (1-Weak, 2-Medium, 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC307.1	3	3										
EC307.2			3	2	3							2
EC307.3			3		3	2						
EC307.4	2	2							3	3		3

CO-PEO/PSO Correlation Matrix : (1-Weak, 2-Medium 3-Strong)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC307.1		2				
EC307.2		2		3		
EC307.3		2			3	
EC307.4		2				

(Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Modu le No	Unit No	Topics	Ref	Hr ¢
1	Title	Fundamental of Computer Networks	• 1	08
	1.1	Basic definitions. Networking devices. Layering architecture: The OSI model. Description of layers.	1	00
	1.2	The Internet protocols TCP/IP protocol suit, IP Protocol and address. What is the Internet? Delay in the Internet (trace route and ping). History of the Internet. Security in the Internet.		
2	Title	Enterprise Network Design	2	06
	2.1	Network requirements, Planning and Design, Structured Wiring and Structured Network Design consist of Core Layer, Distribution Layer, and Access.		
	2.2	Network Design methodology &Network Design considerations Core La yer Technologies. Investigating Server Farms and Security Integrating, Remote Sites into the Network Design.		
3	Title	Transport and Application Layer	1,3	06
	3.1	Transport Protocols introduction. Reliable data transfer - Stop-and-wait and Go-back-N design and evaluation. TCP and UDP semantics and syntax. TCP RTT estimation. Principles of congestion control - efficiency and fairness, reactive and proactive. Socket's programming A simple client-server implementation.		
	3.2	Application layer: Application layer protocols, Client-server as a key model. Web, HTTP, FTP, SMTP, POP3, and DNS. Peer-to-peer file sharing networks.		
4	Title	Software Defined Network and Network Function Visualization	5	10
	4.1	Network Requirements - The SDN Approach - SDN- and NFV-Related Standards - SDN Data Plane - OpenFlow Logical Network Device - OpenFlow Protocol - SDN Control Plane Architecture - REST API - SDN Application Plane Architecture.		
	4.2	NFV Concepts - NFV Reference Architecture - NFV Infrastructure - Virtualized Network Functions - NFV Management and Orchestration - NFV Use Cases - SDN and NFV		
5	Title	Internet of Things (IoT) SECURITY	1,3	10
	5.1	Threats and attacks. Symmetric and public key cryptography. IPsec- Authentication Header-Encapsulating security payload,		
	5.2	Secure sockets-Secure Socket Layer (SSL) - Firewalls and Internet access- Packet filter firewall- Proxy firewall- VPNs - Mobile IP -		

(Autonomous Institute Affiliated to University of Mumbai)

		Header Compression – Voice over IP –	
	Title	Networks	5
6	Self-	Types of Networks, Transmission media, Network Topologies	
	Study		
Total			42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Network Lab set up
2	IP Networking & Network Commands: ifconfig, ping, traceroute, netstat, arp ,nslookup dig
	& route etc.
3	Network Protocol Analyzers: TCPDUMP & Wireshark
4	Installation & Configuration of Web Server (at least four) using open-source tool
5	Network Socket Programming
6	Installation and configuration of open-source Network simulator software
7	Firewall Implementation (IPTABLES)
8	Implementation of SDN
9	Implementation of VPN
10	Cryptography using open source tools/Crypt tools and open SSL

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	TCP/IP protocol suit	Fourth	Behrouz A.	McGraw Hill	2009
			Forouzan (Author)	Education	
2	Introducing Network	-	CCNA Discovery	-	-
	Design Concepts		Learning Guide		
3	Computer Networking: A	Fifth	J. F. Kurose and K. W.	Prentice Hall	2009
	Top-Down Approach		Ross		
4	Data Communication and	Fourth	B.A.Forouzan	McGraw Hill	2017
	Networking				
5	Information Security:	First	Deven Shah	Wiley	2007
	Principles and Practice				

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Foundations of Modern		William Stallings	Addison-Wesley	2015
	Networking: SDN, NFV,			ISBN:	
	QoE, IoT, and Cloud			9780134175393	
2	Computer Networks	Fifth	A.Tanenbaum	Pearson Education	2013
3	Data and Computer	Tenth	William Stallings	Pearson Education	2013
	Communications				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs./week)			0	Credits Assigned				
(Category)	Course Name	L	T	P	0	E	L	Τ	P	Total
Code										
		2	0	2	6	11	2	0	1	3
PE-I	Information			Exa	amin	ation S	Schem	e		
	Theory &	Compone	ent	ISE (%)	MSE	(%)	ESE	(%)	Total
EC311	Coding	Theory	7	20		20)	6	0	100
(IT11)		Laborato	ory	80				2	0	100

Pre-requisite (Codes	Course	Computer Communication Networks, Analog and digital communication
	3T11.1	Interpret information theory concepts and compute the capacity of various types of channels
Course	3T11.2	Analyze encoding and decoding of various source codes and error correction codes
Outcomes	3T11.4	Estimate various performance parameters of errorcorrection coding algorithms
	3T11.5	Understand basics of cryptography algorithms

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
3T11.1	3											
3T11.2	3		2		2							
3T11.3	3		2	2	2				2	2		
3T11.4	3	3			1							
3T11.5	3	1			1				1	1		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
3T11.1		2					

(Autonomous Institute Affiliated to University of Mumbai)

3T11.2	2	2		
3T11.3	2	2	3	
3T11.4	1			
3T11.5	1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

<u>Remember</u>	<u>Understand</u>	<u>Apply</u>	Analyze	<u>Evaluate</u>	<u>Create</u>
	\checkmark	\checkmark	\checkmark		

Module	Unit	Topics	Ref	Hrs.
No.	No.		•	
1		Information theory and source coding	1,2	06
		Introduction to Information Theory, Uncertainty and		
		Information, Average Mutual Information and Entropy,		
		Information Measures for Continuous, Random Variables,		
		Source Coding Theorem, Huffman Source coding: second and		
		thirdorder, extensions, Lempel Zivcoding, Arithmetic coding		
		Run length coding, Introduction to Image Compression The JPEG Standard for Lossless Compression, The JPEG Standard for Lossy Compression, Video Compression Standards, Review of Shannon's Channel capacity, Discrete memoryless channels and capacity, Examples of channel capacity, symmetric channels, AWGN channel, fading channels, Channel coding theorem		

(Autonomous Institute Affiliated to University of Mumbai)

2	Linear Block Codes	1,2	06
	Generator and Parity check Matrices, Encoding circuits, Syndrome and Error Detection, Minimum Distance Considerations, Error detecting and Errorcorrecting capabilities. Standard array and Syndrome decoding. Error Probability after Coding (Probability of Error Correction)		
	Perfect Codes, Hamming Codes,Low Density Parity Check (LDPC) Codes, Optimal Linear Codes Maximum Distance Separable (MDS) Codes.		
3	Cyclic Codes Introduction, Generator and Parity check· Polynomials, Systematic Cyclic codes – Encoding and decoding using Feedback shift register circuitsand polynomial method. Generator matrix for Cyclic codes, Syndrome computation and Error detection, Meggitt decoder. Cyclic Hamming codes, Golay code, Shortened cyclic codes, Cyclic Redundancy Check (CRC) Codes. BCH codes	1,2	06
4	Convolution Codes Graphical representation for encoding and decoding using code tree, trellis, state diagram,polynomial and time domain method, Viterbi decoding. Introduction to Turbo coding	1,2	06
5	Introduction to cryptography Introduction, overview of various techniques Symmetric (Secret Key) Cryptography Asymmetric (Public-Key) Cryptography	1,2	04
6(Self	Cryptography Algorithms	1,2	06
Study)		 Total	28
		i otal	

(Autonomous Institute Affiliated to University of Mumbai)

Laboratory Components:

Sr. No	Title of the experiment
1	Write a simulation program to test shannon's source coding ,channel coding and channel capacity theorem.
2	Write a program to encode and decode a text file and determine thecode efficiency using Shannon – Fano coding and Huffman Coding
3	Write a program to construct Lempel Ziv Coding and decoding and examine its code efficiency
4	Write a program to examine BER performance of linear block code fora a coded and uncoded BPSK communication system in AWGN channel
5	Write a program to examine BER performance of cyclic codes for acoded and uncoded BPSK and QPSK communication system in AWGN channel
6	Write a program to examine BER performance of BPSK modulatedlinear block coded communication system in AWGN channel and fading channel
7	Write a program to examine BER performance of convolutional encoder in a coded and uncoded communication system based on802.11a standard with and without AWGN channel
8	Write a program to examine BER performance of convolutional encoder in a coded and uncoded OFDM system with and withoutAWGN channel
9	Write a program to examine BER performance of convolutional encoder in a coded and uncoded OFDM system with and withoutfading channels
10	Simulation either turbo codes/RS codes/ LDPC codes/BCH codes andtest their error correction capability.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

TEXT BOOKS :

1. Ranjan Bose "Information theory coding and cryptography" 3rd edn, McGraw Hill Education India Private Limited

2.Haykin Simon, "Digital Communication Systems," John Wiley and Sons, NewDelhi,Fourth Edition, 2014.

3.Lathi B P, and Ding Z., "Modern Digital and Analog Communication Systems," Oxford University Press, Fourth Edition, 2009

<u>REFERENCE BOOKS</u>:

1.R. G. Gallager, "Information Theory and Reliable Communication," Wiley, 1968,ISBN-13: 978-0471290483

2. Roman, Steven, "Introduction to Coding and Information Theory", Springer, ISBN978-0-387-94704-4

3.Shu Lin & Daniel J. Costello, Jr. "Error Control Coding" Prentice Hall, Second Edition, 2004.

4. S. B Wicker, Error Control Systems for Digital Communication and Storage, Prentice Hall International, 1995

5.Sklar B, and Ray P. K., "Digital Communication: Fundamentals and applications," Pearson, India, Second Edition, 2009

6..Ranjan Bose, "Information theory, Coding and Cryptography," TMH publication, ISBN: 978-0-07-0669017, 2008.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching	g Sch	eme (I	Hrs/w	veek)	C	redit	s Assig	gned
(Category) Code	Course Name	L	Τ	P	0	Ε	L	T	Р	Total
		2	0	2	8	8	2	0	1	3
PE-I	Speech and	Examination Scheme								
		Compone	ent	ISE (%)	MSE	(%)	ESE	(%)	Total
EC321	Addio 1 Toccssing	Theory	r	50		5	0	1	00	100
(2T21)		Laboratory		50		-	-	5	0	100

Pre-requi	isite Course Codes, if any.	EC303: Digital Signal Processing				
Course O	Course Objective: To familiarize the basic & advance mechanisms of speech and audio processing					
Course O	Course Outcomes (CO): At the end of the course students will be able to					
EC321.1	Apply concepts of speech codi	ng.				
EC321.2	Analyze Audio Perception& psycho-acoustic model.					
EC321.3	Demonstrate parametric repres	sentation, time domain & frequency domain representation of				
LC321.3	speech.					
EC321.4	Analysis of predictive methods of speech.					
EC321.5	Develop systems for various a	pplications of speech & audio processing.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC321.1	2											
EC321.2		2										
EC321.3			2									
EC321.4			2		2							
EC321.5					2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC321.1	2			2		
EC321.2	2			2		
EC321.3		2			2	
EC321.4		2			2	
EC321.5		2			2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply√	Analyze√	Evaluate√	Create

(Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module	Unit	Tonics	Dof	Hrc
No.	No.	Topics	Kel.	1115.
1	Title	Mechanics of speech		
	1.1	Speech production: Mechanism of speech production, Acoustic phonetics – Digital models for speech signals -Sampling speech signals, basics of quantization, delta modulation, and Differential PCM	1,2	8
	1.2	Signal Processing Models of Audio Perception: Basic anatomy of hearing System. Auditory Filter Banks, Psycho-acoustic analysis: Critical Band Structure, Absolute Threshold of Hearing, Simultaneous Masking, Temporal Masking, Quantization Noise Shaping, MPEG psycho-acoustic model.	1,2	
2	Title	Time domain methods for speech processing		8
	2.1	Time domain parameters of Speech signal – Methods for extracting the parameters Energy, Average Magnitude, zero crossing Rate – Silence Discrimination using ZCR and energy	1,2	
	2.2	Short Time Auto Correlation Function – Pitch period estimation using Auto Correlation Function.	4	
3	Tifle	Frequency domain method for speech processing	1.2	8
	3.1	Short Time Fourier analysis: Fourier transform and linear filtering interpretations.	4	U
	3.2	Sampling rates - Spectrographic displays - Pitch and formant extraction - Analysis by Synthesis - Analysis synthesis systems: Phase vocoder, Channel Vocoder.	2,3	
	3.3	Homomorphic speech analysis: Cepstral analysis of Speech, Formant and Pitch Estimation, Homomorphic Vocoders, Speech coding, speech enhancement.	3,5	
4	Title	Linear predictive analysis, synthesis of speech	3,5	4
	4.1	Basic Principles of linear predictive analysis – Auto correlation method – Covariance method.		
	4.2	Solution of LPC equations – Cholesky method – Durbin's Recursive algorithm.		
	4.3	Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP, Speech synthesis: basics of articulatory, source-filter, and concatenative synthesis – VOIP.		
5	Self	Audio compression methods, Audio quality analysis, Spatial		
	Study	Audio Perception and rendering, Speaker identification and verification		
			Total	28

Laboratory Component

(Autonomous Institute Affiliated to University of Mumbai)

Sr No.	Experiment Title
1	Speech production
2	Analysis of speech signal
3	Short-time spectrum analysis of speech
4	Spectrographic analysis of speech
5	Linear prediction analysis of speech
6	Formant synthesis
7	Cepstral analysis of speech
8	Analysis by synthesis of speech
9	Manual speech signal-to-symbol transformation
10	Speaker Analysis /speaker recognition

Text Books :

Sr. No	Title	Edition	Authors	Publisher	Year
1	Speech Communications: Human & Machine	Second	Douglas O'Shaughnessy	IEEE Press, Hardcover 2/e, ISBN: 0780334493.	1999
2	Discrete-Time Speech Signal Processing	First	Thomas F, Quatieri,	Prentice Hall /Pearson Education	2004

Reference Books:

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Speech Processing and Synthesis Toolboxes	First	Donald G. Childers	John Wiley &Sons,September ISBN:0471349593	1999
2	Fundamentals of Speech Recognition	First	L.R. Rabiner and B. H. Juang	Prentice Hall	2009
3	Speech and Audio Signal Processing	Second	Ben Gold and Nelson Morgan	John Wiley and Sons Inc., Singapore	2011
4	Discrete Time Processing of Speech Signals	First	J.R. Deller, J.H.L. Hansen and J.G. Proakis	John Wiley, IEEE Press	1999
5	Digital Processing of Speech Signals	First	L.R.Rabiner and R.W.Schaffer .	Prentice Hall	1979

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teachi	ng Scł	neme (H	rs./w	eek)	(Credits	s Assig	gned
(Category)	Course Name	L	T	P	0	E	L	T	Р	Total
Code										
		2	0	2	6	11	2	0	1	3
PE-II				Exa	mina	tion S	chem	e		
	Optical Fiber	Compo	nent	ISE		MSE	2	ES	E	Total
EC312	Communication	Theor	ry	50		50		10	0	100
(1T12)		Labora	tory	50				50)	100
			-							

Pre-requi	site Course Codes, if any.	AS101: Engineering Physics				
		EC304: Electromagnetic Waves				
Course O	Course Objective: The objective of the course is to provide an understanding of usage of optical fiber					
for comm	unication.					
Course O	utcomes (CO): At the End of	the course students will be able to				
EC322.1	Apply EM Wave theory to un	derstand nature of Optical Signal and their corresponding				
LC322.1	guiding structures.					
EC322.2	Identify Passive Optical Com	ponents, Sources and Detectors.				
EC322.3	Analyze Passive Optical Com	ponents, Sources and Detectors.				
EC322.4	Evaluate losses in the optical systems.					
EC322.5	Compare different Optical Networks.					
EC322.6	Design optical Link Budget s	ystem.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC322.1	3	3	3	1	3					3		
EC322.2	2	2	2	2	3					3		
EC322.3	2	2	2	2	3					3		
EC322.4	2	2	2	2	3					3		
EC322.5	2	2	2	2	3					3		
EC322.6	3	3	3		3					3		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC322.1		2			2	
EC322.2		2			2	
EC322.3		2			2	
EC322.4		2			2	
EC322.5		2			2	
EC322.6		2			1	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create

Theory Component

Module	Unit	Topics	Ref	Hrs.
No.	No.		•	
1		Optical communication fundamentals	1	10
	1.1	Block diagram of Optical Communication system, advantages, loss		
		and bandwidth window, ray theory transmission, total internal		
		reflection, acceptance angle, numerical aperture, skew rays and		
	1.0	The second rays		
	1.2	fiber according to refractive index profile and mode transmission.		
	1.3	Couplers, Isolators, circulators, multiplexers, filters, fiber gratings,		
		Fabry Perot filters, arrayed waveguide grating, switches and		
		wavelength converters		
2		Optical communication Components	1	08
	2.1	Sources (LED, LASER), Detectors (PIN, APD) and Amplifiers		
3		Optical Networks and losses in the system	1	10
	3.1	Attenuation, absorption, linear and nonlinear scattering losses, bending		
		losses, modal dispersion, waveguide dispersion, dispersion and pulse		
		broadening, dispersion shifted, and dispersion flattened fibers, and		
		nonlinear effects Measurements of attenuation, dispersion and OTDR		
	3.2	Optical Networks: Link budget, SONET, SDH, WDM, DWDM		
4(Self		Review of latest optical fiber application and research		06
Study)				
		,	Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Setup of Optical fiber communication link and measurement of Bit Error Rate (BER) and
	Eye pattern analysis
	A) Setup of analog fiber optic communication link
	B) Setup of digital fiber optic communication link
	C)Measurement of Bit Error Rate
	D)Study and measurement of Eye pattern
2	Measurement of Numerical Aperture (NA) of optical fiber
3	Measurement of Losses in Optical Fiber
4	Study characteristic of LED and Photo detector in optical fiber communication link.
5	To verify the Brewster's law and to find the Brewster's angle
6	Michelson's Interferometer- Refractive index of glass plate: To determine the refractive

(Autonomous Institute Affiliated to University of Mumbai)

	index of a thin glass plate.
7	To Demonstrate the working of LASER using Phet virtual Lab
8	Measure propagation loss in plastic fiber and to measure the bending loss.
9	Plotting optical link power budget.
10	Mini project on optical network.

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Optical Fiber	John M. Senior	Fourth	Prentice Hall of	2013
	Communication			India	
				Publication	
2	Optical Fiber	Gred Keiser	Third	Mc-Graw Hill	2012
	Communication			Publication	
3	Optical Networks: A	Rajiv Ramaswamy	Third	Elsevier	2010
	Practical Perspective	and Kumar N.		Publication	
	Ĩ	Sivarajan			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Coue		L	Τ	Р	0	Ε	L	Т	P	Total
		2	0	2	4	8	2	0	1	3
PE-II	Wavelet Transform	Examination Scheme								
		Component]	ISE		MSE		SE	Total
EC322	and Applications	The	ory		50		50	1	00	100
(2T22)		Labor	atory		50			:	50	100
			-							

Pre-requisit	e Course Codes, if any.	Foundation of Signal Processing OR Digital Signal				
		Processing				
Course Obje	ective:					
Course Outcomes (CO): At the End of the course students will be able to						
1 Analyze the terminology that are used in the wavelets literature						
2	2 justify why wavelets provide the right tool					
Apply wavelets, filter bank		s, and multiresolution techniques to signal processing problem				
5	justify why wavelets provide	e the right tool.				
4	Develop wavelet based ap	plications				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	2	2		3							2
2	3	2	3		3							1
3	3	2	3	2	3							1
4	3	3	3	2	3				3	3	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1							
2					3		
3							
4						3	

(Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Module Unit Topics		Ref	Hrs	
No.	No.	Topics	INCI.	111.5.
1	Title	Fundamentals of Wavelets and Short Time Fourier Transform		
	1.1	Introduction to Wavelets, The concept of scale and resolution, uncertainty, History of wavelet, Different types of wavelets (e.g., Haar, Daubechies, Morlet), Orthogonal and Biorthogonal wavelet bases, Multiresolution analysis and scaling functions .		06
	1.2	Short Time Fourier Transform (STFT), Signal representation with continuous and discrete STFT, concept of time-frequency resolution, Resolution problem associated with STFT, Heisenberg's Uncertainty principle and time frequency tiling, lacunas of STFT and necessity of wavelet transform.		
2	Title	Continuous Wavelet Transform		
	2.1	Wavelet transform-A first level introduction, Continuous time- frequency representation of signals, Definition and formulation of the continuous wavelet transform		04
	2.2	Properties of wavelets used in continuous wavelet transform, Condition of admissibility and its implications. Discretization of scale - generalized filter bank. Discretization of translation - generalized output sampling. Discretization of time/ space (independent variable) - sampled inputs.		
3		Discrete Wavelet Transform		
	3.1	Introduction to discrete wavelet transform, Haar scaling functions and function spaces, Translation and scaling of $\phi(t)$, Haar wavelet function, Scaled and translated Haar wavelet functions, Orthogonality of $\phi(t)$ and $\psi(t)$, Normalization of Haar bases at different scales, Daubechies wavelets		06
	3.2	Construction and Computation of the discrete wavelet transform		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

4	Title	Discrete Wavelet Transform and Relation to Filter Banks		0.0	
	4.1 Signal decomposition (Analysis), Relation with filter banks, Frequency response, Signal reconstruction: Synthesis from coarse scale to fine scale, Upsampling and filtering, Perfect reconstruction filters, QMF conditions, Concepts of Multi-Resolution Analysis (MRA) and Multi-rate signal processing.				
	4.2	Multiresolution Analysis:Multi-resolution decomposition and 2-D signals. The concept of Time- Frequency filtering.			
5	Title	Applications of Wavelet Transform			
	5.1	One dimensional Signal Compression, Analysis and classification		0.0	
		of audio signals, Wavelet based signal de-noising and energy		06	
		compaction, Wavelets in adaptive filtering, Digital Communication			
		and Multicarrier Modulation .			
	5.2	Image Compression, image processing and Image fusion			
6	Self Study	The wavepacket transform: Nobel identities and wavelet packets, the basis used. Signal representation using Wavelet Packet Analysis, Selection of best basis			

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment					
1	Short Time Fourier Transform					
2	Time and Frequency domain Analysis of Different Wavelets					
3	Image Compression: Investigating the use of DWT for image compression					
4	Feature Extraction: Experimenting with DWT to extract relevant features from signals or					
	images, such as edges, textures, or key points, for tasks like object recognition or pattern					
	analysis.					
5	Signal Analysis: Applying DWT to analyze signals in the time-frequency domain,					
	examining the decomposition coefficients to identify significant frequency components or					
	transient features.					
6	Biomedical Applications: Using DWT for analyzing biomedical signals like					
	electrocardiograms (ECG), electroencephalograms (EEG), or medical imaging, to detect					
	abnormalities, perform signal classification, or extract diagnostic features.					
7	Compression Performance Evaluation: Comparing different wavelet families,					

(Autonomous Institute Affiliated to University of Mumbai)

	decomposition levels, and coding techniques to evaluate the compression performance of DWT-based compression algorithms in terms of rate-distortion trade-offs.
8	Watermarking: Experimenting with DWT for digital watermarking, embedding imperceptible information into signals or images to protect copyright or verify authenticity.
9	Image Fusion: Exploring DWT-based image fusion techniques to combine multiple images while preserving important information from each source, such as in multi-modal medical imaging or remote sensing applications.
10	Image Fusion: Exploring DWT-based image fusion techniques to combine multiple images while preserving important information from each source, Time-Frequency Analysis: Examining the time-frequency representation obtained by DWT to analyze non- stationary signals and capture localized frequency content over time.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Insight into Wavelets:	Third Edition	K. P. Soman,	PHI Learning	2010
	From Theory to		K. I.	Pvt. Ltd.	
	Practice,		Ramachandran,		
			N. G. Resmi		
2	Multiresolution signal Decomposition: Transforms, Subbands and Wavelets		A.N. Akansu and R.A. Haddad	Academic Press, Oranld, Florida	1992
3	Introduction to Wavelets and Wavelet Transforms: A Primer			Prentice Hall Series	1997

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Fundamentals of Wavelets: Theory, Algorithms, and Applications	Second Edition	J.C. Goswami and A.K. Chan,	Wiley	2011

(Autonomous Institute Affiliated to University of Mumbai)

2	Wavelets and their Applications	 Michel Misiti, Yves Misiti, Georges Oppenheim, JeanMichel Poggi	John Wiley & Sons	2010
3	A friendly guide to Wavelets	 Gerald Keiser	Springer	2011
4	Multirate Systems and Filter Banks	 P. P. Vaidyanathan	Pearson Education,	2004
5	Wavelets and signal processing: An application based introduction	 Hans-Georg Stark	Springer	2005

(Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Т	Р	0	E	L	Т	P	Total
	Digital CMOS VLSI Design	3			5	8	3			3
PE-II		Examination Scheme								
		Compone		Component ISE(%) M		(%)	ES	E(%)	Total	
EC332		Theory			20		20		60	100
3T32		Laboratory								

Pre-requisit	e Course Codes, if any.	ET101: Basic Electrical Engineering		
		EC101: Digital Systems and Microprocessors		
		ET202: Electronic Devices		
		ET205: Analog Circuits		
Course Obje	ective:			
Course Outcomes (CO): After successful completion of the course, student will be able to				
CO1	Explain scaling theory for MOSFET			
CO2	Design MOSFET based in	nverter circuits with given constraints		
CO3	Analyze MOSFET based	combinational and sequential logic circuits		
CO4	CO4 Realize MOSFET based logic circuits with different design styles			
CO5	Explain principle of working of semiconductor memories			

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Review of MOSFET Physics		08
	1.1	Threshold Voltage Equation, MOSFET Structure and Operation, Current-Voltage Characteristics and MOSFET Capacitances	1	
	1.2	MOSFET Scaling, Types of scaling and Small geometry effects	1	
2	Title	MOSFET Inverters		08
	2.1	Static Characteristics of resistive load and CMOS Inverter, comparison of all types of MOS inverters	1	
	2.2	Dynamic Characteristics of inverters, design of CMOS inverters with constraints	1	
3	Title	Combinational MOS Logic Circuits	1,2	08
	3.1	MOS Logic Circuits with Depletion NMOS Loads and CMOS Logic Circuits		

(Autonomous Institute Affiliated to University of Mumbai)

	3.2	Complex Logic Circuits and Concept of equivalent CMOS inverter		
4	Title	Dynamic Logic Circuits	1	08
	4.1	Static CMOS, pass transistor logic, transmission gate		
	4.2	Pseudo NMOS, Domino, NORA, Zipper, C ² MOS		
5	Title	Sequential MOS Logic Circuits	1,2	06
	5.1	Behavior of Bi-stable Elements		
	5.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, decoder		
6	Title	Semiconductor Memories	2,3	06
	6.1	ROM Array, SRAM (operation, design strategy, leakage currents, read/write circuits),		
	6.2	DRAM (Operation 3T, 1T, operation modes, leakage currents, refresh operation, Input-Output circuits),		
	6.3	Flash (mechanism, NOR flash, NAND flash)		
	6.4	Peripheral Circuits: Sense amplifier, decoder		
			Total	42

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	CMOS Digital Integrated	Third	Sung-Mo Kang,	Tata McGraw	
	Circuits Analysis and Design	Edition	Yusuf Leblebici	Hill	
2	Digital Integrated Circuits: A	Second	Jan M. Rabaey,	Pearson	
	Design Perspective	Edition	Anantha	Education	
			Chandrakasan,		
			Borivoje Nikolic		
3	Introduction to VLSI Circuits	Student	John P. Uyemura	Wiley	2013
	and Systems	Edition			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)						Credits Assigned					
(Category) Code	Course Name	L	Т	Р	0	E	L	Т	Р	Total			
		3	0	2	5	10	3	0	1	4			
PE-I	Control of			Exam	n Sche	n Scheme							
	Power Flectronics	C	ompone	ent	ISE	(%)	MSE	(%)	P 1 ESE(%) 60 50	Total			
EC341	Converters		Theory	r	2	20	2	0	60	100			
(4T41)	Converters	L	Laboratory			50	-	-	50	100			

Pre-requisit	e Course Codes, if any.	Basic Electrical Engineering
Course Obje	ective: To study controlling as	spects of major types of power electronic converters in
analog and di	igital domain with appropriate	signal conditioning and sensing circuits
Course Out	e course students will be able to	
ET306.1	To study design aspects of si	ignal sensing and conditioning circuits in PE Converters
ET306.2	To get familiar with voltage	mode and current mode controllers in PE
ET206 2	To study control strategies	for stand-alone and grid connected converters used in PV
E1300.3	and Power System application	ons
ET306.4	To study converter control in	n AC Drives system
ET306.5	To study analog and digital t	echniques for Battery Chargers and SMPS PE Converters

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ET306.1	2											
ET306.2	2	3										
ET306.3		2.5										
ET306.4		3	2.5									
ET306.5	2											

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PEO/PSO	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
ET306.1	2	1					
ET306.2	2				3		
ET306.3	2				2		
ET306.4	2				2		
ET306.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand J	Apply J	Analyze J	Evaluate	Create	
----------	--------------	---------	-----------	----------	--------	--

(Autonomous Institute Affiliated to University of Mumbai)

Module	Unit	Tonias	Dof	Ure
No.	No.	Topics	Rei.	пrs.
1	Title	Fundamental Functional Blocks in Converter Control for Discrete-		
		time implementations		
	1.1	Low Pass and High-pass filters, Proportional Integral and Derivative		00
		Controller, Harmonic Oscillators, Reference frame transformations,		00
		Phase-shift and quadrature filters, Phase lock-loop, higher order digital		
		filters, etc.		
2	Title	Modulation Techniques		
	2.1	Voltage Controllers		
	-	Ramp based linear PWM. Sinusoidal PWM. Voltage Space Vector		
		Modulation. Inverter Flux Vector based Modulation		
	2.2	Current Controllers: Hysteresis Control. Linear Current Control.		06
		dead-beat current control. SOGI based Controller		
3	Title	Control of AC to DC Converters		
	2.1	Control of SCR based rectifier with Cosine-wave crossing techniques		
	2.2	PWM Rectifier Control. Control implementation of PFC		00
				09
	2.3	Three Phase PWM Rectifier and Active Power Filter control with		
		rotating reference frame method and instantaneous p-q theory		
3	Title	Control of DC-to-DC Converters		
	3.1	Modelling of DC-DC Buck and Bosot Converter		
	3.1	Conventional Constant Voltage Control with PI Controller		00
	3.2	Conventional Constant Current Control with PI Controller		09
	2.2	Least sector of CV CC Materia for start		
	3.3	Implementation of CV-CC Mode of Control		
	3.4	Current Mode Control		
	Title	DC to AC Converters		
4				
	41	Full Bridge/Half Bridge Sinusoidal Pulse Width Modulation with		
	7,1	voltage mode Control		09
	4.2	Space Vector Modulation		
	4.2	Investor flux control method		
	4.3			
5		AC-AC converters		
	5.1	Principle of on-off and phase Control – single-phase half and full wave		
		AC voltage controller, three phase AC voltage controller.		06
	5.2	Buck, Boost and Buck-Boost Operation of Solid-state AC-AC		
		Converters with Bidirectional Switches		
6	*Self-	Laplace transformations, z-transformations, s-z transformations,		05
	Study	discretization techniques, control system stability in continuous and	1	
		discrete time mode. SOGI		
		Total Hours (*exc	luded)	45

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component (Indicative): To be completed minimum of 4 Lab Project Assignments with Computer Simulation (Mandatory) and Laboratory Experimentation (optional)

LAB Project-1 Static Var Compensator Lab Project-2 Closed Loop Control of DC-DC Converter Lab Project-3 Implementation of a Sine Wave Inverter with Inverter Flux Control Lab Project-4 Implementation of a Buck-Boost AC-AC PWM Voltage Controller

Sr. No	Title	Edition	Authors	Publisher	Year
1	Power Electronics:	Third	Ned Mohan,	John Wiley and	2003
	converters, Application and		Undeland and	sons	
	design		Robbin		
2	Power Electronics Circuits,	Fourth	Rashid M.H.	Pearson	2004
	Devices and Applications			Education	
3	Discrete Time Control	second	K. Ogata	Pearson	
	Systems	edition,		International	
	-				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Simulation of Power	First	M. B. Patil, V.	Narosa	2013
	Electronic Circuits		Ramanarayanan,	Publishing	
			V.T. Ranganathan	House	
2	The switching function	First	Christos Marouchos	IET, Devices and	2008
	analysis of Power Electronic			Circuits	
	Circuits				
3	Digital Signal Processing	Second	Krzysztof Sozański	Springer	2017
	in Power Electronics Control				
	Circuits				
4	Control Circuits in	First	Miguel Castilla	The Institution of	2016
	Power Electronics			Engineering and	
	Practical issues in design			Technology	
	and implementation				

(Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name]	heme k)	(Credits Assigned					
Code		L	Т	Р	0	E	L	Т	Р	Total
		2		2	5	8	2		1	3
PE-II		Examination Scheme								
	Real-Time	Comp	Component		E(%)	M	(%)	ESE(%)		Total
EC332	EC332	The	eory		20		20		60	100
(3T32)		Labor	ratory		80				20	100

Pre-requisit	e Course Codes, if any.	EC101: Digital Systems and Microprocessors			
		EC201: Computer Architecture and Organization			
		EC206: Microcontrollers			
		EC305B: Internet of Things Laboratory			
Course Obj	ective: To impart students	the fundamentals of Operating Systems, system design skills			
using modeli	ng practices, learn key cond	cepts in reliability, and implementation aspects of real time			
concepts with	h respect to Industrial stand	ards.			
Course Outcomes (CO): After successful completion of the course, student will be able to					
CO1	Get an insight of design met match recent trends in techn	rics of Embedded systems to design real-time applications to ology			
CO2	Compare and contrast var	ious ARM architecture series			
CO3	Demonstrate the basic cor	ncept of OS and configure the System			
CO4	Apply kernel Services and	1 Synchronization			
CO5	Apply the industry standa	rds for assessment of embedded product			
CO6	Analyze the reliability of tolerance	embedded system with respect to fault detection and fault			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2									
CO2	2	2	2									
CO3	2	2	2									
CO4	2	2	2									

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO5	2	2	2						
CO6	2	2	2	2	2				

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

СО	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
CO1		1				
CO2	1		1			
CO3	1		1			
CO4	1	1	1			
CO5		1	1			
CO6	1		1	2		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand 🗸	Apply	Analyze	Evaluate	Create
----------	--------------	-------	---------	----------	--------

Module No.	Unit No.	Topics	Ref.	Hrs
1	Title	Fundamentals of Embedded System:		06
	1.1	Introduction to Embedded Systems, Characteristics of Embedded System, Design Process, Design Metrics, and optimization of various parameters of embedded system. Design trade-offs due to process compatibility. Real-time System's requirements, real-time issues.	1,2	
	1.2	Embedded Product development lifecycle. Program Modeling concepts with design examples: DFG, FSM, Petri-net and Use case.	1,2	
2	Title	ARM Architecture:	3,4	04
	2.1	Differences among ARM7, ARM9 and ARM11 architectures	3,4	
	2.2	Generic architecture concepts of ARM Cortex Series (A, R and	3,4	

(Autonomous Institute Affiliated to University of Mumbai)

		M)				
	2.3	ARM Cortex M3- Detailed Architecture	3,4			
3	Title	Real-time Operating System concepts		08		
	3.1	Tasks, Task states, Message Queue, Mailbox, Pipe Function, Mutex, RPC Function, Shared Resources	2,5,6			
	3.2	Inter-process Communication, Semaphore, Spinlock Semaphore, round-robin scheduler, Blocking Semaphore, Mailbox, Pre- emptive scheduler, FCFS, EDF and RMA scheduler.	2,5,6			
4	Title	Implementation of a Real-time kernel	5,6	06		
	4.1 Foreground Background System, Critical Section of codes, Task control Blocks, Task Scheduling, Creating a Task and Deleting a Task					
	4.2	Creating and Deleting Semaphore, Creating and deleting Mutex, creating and Deleting Mailbox, Creating and deleting Message Queue.	5,6			
5	Title	Industry Standards		04		
	5.1	Introduction to IEC 61508, IEC 60601 and IEC 26262 standards: Organizing and managing the life-cycle, Requirements involving the specification, Requirements for design and development, Integration and test, Operations and maintenance, Validation, Modifications, Acquired sub-systems, Organizing and managing the software engineering	7,8, 9, 10			
			Total	28		

Laboratory Component

Sr. No.	Title of the Experiment
1	Implementing a basic program of "HelloWorld" in ARM Cortex M3 processor
2	Porting Operating System kernel on Cortex M3 architecture and understanding file hierarchy.
3	Initializing the Kernel, Create Task and Start the Task in OS
4	Implementing OS interrupt Handler
5	Performing OS Kernel Scheduling. (Pre-emptive Scheduler)

(Autonomous Institute Affiliated to University of Mumbai)

6	Implementing various Kernel Services in OS
7	Implementing Semaphore in OS
8	Performing Shared Resources Protection in OS
9	Implementing Mutexes in Micrium OS.
10	Implementing Message Queues in Message Queues

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	Embedded System: Architecture, Programming and Design	2nd edition	Rajkamal	Tata McGraw-Hill	2011
2	Introduction to Embedded Systems	2nd edition	Shibu K. V	Tata McGraw-Hill	2017
3	ARM System Developer"s Guide Designing and Optimizing System Software	First	Andrew N. Sloss, Dominic Sysmes and Chris Wright	Elsevier Inc Morgan Kaufmann	2004
4	Embedded System: Real time Operating Systems for the ARM Cortex TM M3		Jonathan W. Valvano	Create Space Independent Publishing Platform	2012
5	MicroC/OS-II: The Real-Time Kernal		Jean J. Labrosse	CRC press	2002
6	Using the FreeRTOS Real Time Kernel -a Practical Guide- Cortex-M3	Third	Richard	McGraw-Hill	2010

(Autonomous Institute Affiliated to University of Mumbai)

	Edition		Barry		
7	FunctionalSafety,AStraightforwardGuide to applyingIEC 61508 and RelatedStandards	2nd edition	David Smith	Elsevier	2004
8	IEC 61508: IEC standard for the functional safety for electrical, electronics and programmable electronics equipment	-	-	https://www.iec.ch/safety	-
9	IEC 60601: IEC standard on Medical Electric Equipment	-	-	https://www.iec.ch/safety	-
10	IEC 26262: IEC standard on Road vehicles	-	-	https://www.iec.ch/safety	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	Т	Р	0	E	L	T	Р	Total
	Electric Motor	3	0	2	5	10	3	0	1	4
PE-II		Examination Scheme								
		Component			ISE(%)		MSE(%	6)	ESE(%)	Total
EC342	Drive Systems	Theory		2	0	20		60	100	
(4T42)		Laboratory		5	0			50	100	

Pre-requisit	e Course Codes, if any.	Basic Electrical Engineering
Course Obje	ective: To study controlling as	pects of major types of power electronic converters in
analog and d	igital domain with appropriate	signal conditioning and sensing circuits
Course Outo	comes (CO): At the End of th	e course students will be able to
1	To grasp fundamental conce	pts of modern electric motors and load characterization
2	To study electric motor drive	e control system
3	To study different application	ns of electric motor drives

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	2											
2	2	3										
3		2.5										
4		3	2.5									

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO/PEO/PSO	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
1	2	1					
2	2				3		
3	2				2		
4	2				2		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand J	Apply J	Analyze J	Evaluate	Create		
Theory Component							

Module	Unit	Topics	Dof	Ure	
No.	No.	Topics	Kel.	1115.	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

1	Title	Electric Motor Basics				
	1.1 Induction Motors, Brushless DC Motors, Synchronous Reluctance					
		Motor, Switched Reluctance Motors, Permanent Magnet Synchronous				
	Motors, Stepper Motors, Linear Motors and Actuators, Electric and					
		regenerative breaking, load characterization, field of applications of				
		various motors				
2	Title Electric Motor Drive Control Techniques for AC Motors					
	Scalar an	d Vector Control of AC Electric Motors, Direct Torque control, field-				
	oriented	control, Sensor based and Sensor-less Control		_		
			12	2		
2	Titla	Electric Motor Drive Control Techniques for PLDC Motors and				
3	Title	Syn-RM Motors				
	Practical implementation of sensor based and sensorless BLDC Motor Drive			9		
	Systems, Practical implementation of Switched Reluctance Motors					
	Title	Control of Linear Motors and Actuators				
4						
	Control of Linear Motors and Actuators					
		Control of Stepper Motors	09	9		
		Total E	lours 40	0		

Laboratory Component (Indicative): To be completed minimum of 4 Lab Project Assignments with Practical Implementation on Digital Platforms

LAB Project-1 Closed loop control Induction Motor with V/F Control

Lab Project-2 Closed loop control

Lab Project-3 sensor/sensorless BLDC Motor Drive

Lab Project-4 Implementation of drive system for Linear Motors and Actuators

Lab Project-5 Implementation of drive system for stepper-motor

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Reference Books: Books:

- 1. Chang Liang Xia,"Permanent Magnet Brushless Dc Motor Drives and Controls" Wiley 2012.
- 2. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, Third Edition, New Delhi, 2011.
- 3. Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education, second Edition, 2003.
- 4. Dubey. G.K., "Thyristorised power controllers", New age International, New Delhi, 2002.
- 5. Bhimbhra P.S., "Power Electronics", Khanna Publishers, New Delhi, 2005
- 6. Miller. T. J. E., "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford, 1989.
- 7. Kenjo. T and Nagamori. S, "Permanent Magnet and Brushless DC Motors", Clarendon Press, Oxford, 1989.
- 8. Kenjo. T, "Stepping Motors and their Microprocessor Control", Clarendon Press, Oxford,

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

PROGRAM ELECTIVE COURSES

• 4 Electives are sufficient to specialize in a particular vertical/thread/area.

TD/ PE	PE1	PE2	PE3	PE4	PE5	PE6
THREAD 1:	T11:	T12:	T13:	T14:	T11,	T11,
Communication	Information Theory & Coding	Optical Fiber Communication	Microwave Communicati on	Space Communication on Technologies	T12, T21, T22,	T12, T21, T22,
THREAD 2:	T21:	T22:	T23:	T24:	T31,	T31,
Signal Processing	Speech and Audio Processing	Wavelet Transform	Image & Video Processing	Principles Soft Computing	T32, T41,	T32, T41,
THREAD 3:	T31:	T32:	T33:	T34:	T42,	T42,
VLSI & Embedded Systems	Digital CMOS VLSI Design	Real Time Embedded Systems	Semiconducto r Technologies	Mixed VLSI Design	X, Y P, Q	X, Y P, Q
THREAD 4:	T41:	T42:	T43:	T44:		
Power Electronics and Energy Systems	Control of Power Electronics Converters	Electric Motor Drive Systems	Embedded & Digital Control of PE Systems	Selected topic in Power Electronics & Drives		
GENERAL	X:	Y:	P:	Q:		
	Computer Communication Network (Cat2) T11, T12, T21, T22, T31, T32, T41, T42	Fundamentals of Antenna (Cat2) T11, T12, T21, T22, T31, T32, T41, T42	Artificial Intelligence & Machine Learning T13, T14 T23, T24 T33, T34 T43, T44	Telecomm Network Operations & Management T13, T14 T23, T24 T33, T34 T43, T44		